Abstract

Alzheimer's disease (AD) is a form of Dementia known to diminish the brain's function by perturbating its structural and functional components. Though cholinesterase inhibitors are widely used to treat AD, they are limited by numbers and side effects. Hence, present study aims to identify structurally diverse Acetylcholinesterase (AChE) inhibitory plant secondary metabolites (PSM) by employing high throughput screening and computational studies. AChE inhibitory activity was performed using 390 crude extracts from 63 plant parts belongs to 58 plants. The lowest IC50 value was recorded by acetone extract of Cyperus rotundus rhizome at 0.5 mg/ml, followed by methanol extract of Terminalia arjuna bark (0.95 mg/ml) and water extract Acacia catechu stem (0.95 mg/ml). A virtual library containing 487 PSM belongs to 18 plants found positive for AChE inhibition (IC50≤5 mg/ml) was prepared. Through ADMET analysis, 78 PSM fulfilling selected drug-likeness parameters were selected for further analysis. Molecular docking studies of selected PSM against AChE recorded a wide range of binding energy from −3.40 to −10.90 Kcal/mol. Further molecular dynamics simulation studies also recorded stabilized interactions of AChE-ligand complexes in the term of RMSD, RMSF, Rg, SASA, and hydrogen bond interaction. MMPBSA analysis revealed the binding energy of selected PSM ranging from −123.757 to −261.697 kJ/mol. Our study demonstrated the potential of 12 PSM (Sugiol, Margolone, 7-Hydroxy-3',4’-(Methylenedioxy) flavan, Beta-cyprone, Ethenone, Isomargolonone, Serpentine, Cryptolepine, Rotundone, Strictamin, Rotundenol and Nootkatone) as AChE inhibitors. Further in vitro and in vivo experimental evaluations with pure PSM could be beneficial for therapeutic uses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.