Abstract

This paper presents a new method for fault diagnosis of rolling element bearings, which is developed based on a combination of weighted K nearest neighbor (WKNN) classifiers. This method uses wavelet packet transform based on the lifting scheme to preprocess the vibration signals before feature extraction. Time- and frequency-domain features are all extracted to represent the operation conditions of the bearings totally. Sensitive features are selected after feature extraction. And then, multiple classifiers based on WKNN are combined to overcome the two disadvantages of KNN and therefore it may enhance the classification accuracy. The experimental results of the proposed method to fault diagnosis of the rolling element bearings show that this method enables the detection of abnormalities in bearings and at the same time identification of fault categories and levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.