Abstract

The light reaction in natural photosynthesis is generally recognized as one of the most efficient mechanisms for converting solar energy into other energy sources. We report herein on a novel strategy for generating H(2) fuel via an artificial Z-scheme mechanism by mimicking the natural photosynthesis that occurs in green plants. Designing a desirable photocatalyst by mimicking the Z-scheme mechanism leads to a conduction band that is sufficiently high to reduce protons, thus decreasing the probability of charge recombination. We combined two visible light sensitive photocatalysts, CdS and carbon-doped TiO(2), with different band structures. The used of this combination, that is, CdS/Au/TiO(1.96)C(0.04), resulted in the successful transfer of photogenerated electrons to a higher energy level in the form of the letter 'Z'. The system produced about a 4 times higher amount of H(2) under irradiation by visible light than CdS/Au/TiO(2). The findings reported herein describe an innovative route to harvesting energy by mimicking natural photosynthesis, and is independent of fossil fuels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.