Abstract

The light reaction in natural photosynthesis is generally recognized as one of the most efficient mechanisms for converting solar energy into other energy sources. We report herein on a novel strategy for generating H(2) fuel via an artificial Z-scheme mechanism by mimicking the natural photosynthesis that occurs in green plants. Designing a desirable photocatalyst by mimicking the Z-scheme mechanism leads to a conduction band that is sufficiently high to reduce protons, thus decreasing the probability of charge recombination. We combined two visible light sensitive photocatalysts, CdS and carbon-doped TiO(2), with different band structures. The used of this combination, that is, CdS/Au/TiO(1.96)C(0.04), resulted in the successful transfer of photogenerated electrons to a higher energy level in the form of the letter 'Z'. The system produced about a 4 times higher amount of H(2) under irradiation by visible light than CdS/Au/TiO(2). The findings reported herein describe an innovative route to harvesting energy by mimicking natural photosynthesis, and is independent of fossil fuels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.