Abstract

ABSTRACT Numerically controlled machine tools are commonly used in metalworking processes due to their precision and reproducibility. However, finding the appropriate cutting parameters and machining process using simple machining features is limited, as parts may have complex interacting machining features. This study contributes to solving this problem by integrating PSO-ANN hybrid algorithm and genetic algorithm, to predict and optimize roughness, cost, and energy consumption for interactive features. From the research carried out, it was found that the output variables were highly correlated, with coefficients above 0.97%. In addition, it was demonstrated that proper selection of machining techniques and sequences could lead to a significant reduction in energy consumption, with a 99.25% variation between minimum and maximum values. The genetic algorithm identified the optimum cutting parameters, namely Vc = 25.45 m/min, f = 0.111 mm/rev, and ap = 0.58 mm, which led to a considerable improvement in the results obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.