Abstract

A new method for measuring the individual mass flowrate of gas–liquid two-phase flow of low liquid loading was proposed based on the combination of ultrasonic and Coriolis flowmeters. The ultrasonic flowmeter and Coriolis flowmeter were allocated in series along a horizontal flowline under stratified and annular flow regimes. A coupling model was obtained by combining two sub-models developed based on the two measurement principles respectively. The combination model was verified through experimental data and it has been demonstrated that (1) with the coupling model taking the apparent gas volumetric flowrate from the ultrasonic flowmeter and mass flowrate from the Coriolis flowmeter as inputs employed, the root-mean-square errors of the calculated gas and liquid mass flowrates are 3.09% and 12.78%, respectively, within the range of 0.15≤x≤0.65, 0.03≤X≤0.45 and 0.2MPa≤P≤0.5MPa; (2) it is a possible way to develop a coupling model by employing the apparent density from the Coriolis flowmeter instead of the mass flowrate to extend the application range of the combination measurement method and the root-mean-square errors of the calculated gas and liquid mass flowrate are 2.59% and 4.38%, respectively, within the range of 0.04≤x≤0.15 at P=0.2MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.