Abstract

Although various fluorescent sensors for biomolecules had been extensively reported, the effective fluorescent sensor was seldom reported for detecting oleanolic acid up to now. This work reports the first color-change fluorescence sensor for oleanolic acid based on a bridging bis-cyanostilbene derivative with chiral camphanic groups (C-BCS). C-BCS possessed the chartreuse fluorescence in aqueous media, which transferred to strong blue fluorescence in the presence of oleanolic acid. This sensing ability of C-BCS for oleanolic acid exhibited the high selectivity among all kinds of biomolecules and ions. The good linearity between the fluorescence intensity and concentration of oleanolic acid was acquired in the range of 0.2 × 10-6 to 8.0 × 10-6M with the detecting limitation of 0.0582μM. The 1:1 binding process was clarified as oleanolic acid located in the opening cavity composed of two bridging cyanostilbene units and two chiral camphanic groups based on multiple hydrogen bonds and hydrophobic interaction. The detecting ability of C-BCS was applied on sensing oleanolic acid in thin-layer chromatography analysis, imprinting experiment, tap water, and tea samples, suggesting the effective on-site sensing abilities of C-BCS for oleanolic acid in real samples and daily life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.