Abstract

BackgroundColletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease. It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. A “Mixed Effects” Generalized Linear Model (GLM) was developed and applied to an existing Illumina transcriptome dataset, substantially increasing the statistical power of the analysis of C. graminicola gene expression during infection and colonization. Additionally, the in planta transcriptome of the wild-type was compared with that of a mutant strain impaired in the establishment of biotrophy, allowing detailed dissection of events occurring specifically during penetration, and during early versus late biotrophy.ResultsMore than 2000 fungal genes were differentially transcribed during appressorial maturation, penetration, and colonization. Secreted proteins, secondary metabolism genes, and membrane receptors were over-represented among the differentially expressed genes, suggesting that the fungus engages in an intimate and dynamic conversation with the host, beginning prior to penetration. This communication process probably involves reception of plant signals triggering subsequent developmental progress in the fungus, as well as production of signals that induce responses in the host. Later phases of biotrophy were more similar to necrotrophy, with increased production of secreted proteases, inducers of plant cell death, hydrolases, and membrane bound transporters for the uptake and egress of potential toxins, signals, and nutrients.ConclusionsThis approach revealed, in unprecedented detail, fungal genes specifically expressed during critical phases of host penetration and biotrophic establishment. Many encoded secreted proteins, secondary metabolism enzymes, and receptors that may play roles in host-pathogen communication necessary to promote susceptibility, and thus may provide targets for chemical or biological controls to manage this important disease. The differentially expressed genes could be used as ‘landmarks’ to more accurately identify developmental progress in compatible versus incompatible interactions involving genetic variants of both host and pathogen.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2546-0) contains supplementary material, which is available to authorized users.

Highlights

  • Colletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease

  • Overview of the RNA sequencing results and statistical analysis A total of ~3.5 × 108 Illumina sequencing reads were obtained from samples consisting of the wild type (WT) and mutant strain (MT) strains at three different stages of in planta development: pre-penetration appressoria (AP); biotrophy (BT); and necrotrophy (NT: WT only) (Additional file 1: Figure S1; Additional file 2: Table S1)

  • EdgeR Multidimensional Scaling (MDS) plots showing the spatial location of data clusters indicated that the WT appressorial (WTAP), MT appressorial (MTAP), and MT biotrophic (MTBT) phases were similar to one another, while the WT biotrophic (WTBT) and the WT necrotrophic (WTNT) phases were distinct (Fig. 1)

Read more

Summary

Introduction

Colletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. After mechanically penetrating the plant epidermis via a melanized appressorium, C. graminicola grows initially as a biotroph, producing thick primary hyphae that invade living host cells, and are separated from the host cytoplasm by a membrane Later, it switches to necrotrophic growth, producing thinner secondary hyphae that colonize dead cells and are no longer surrounded by a membrane [5,6,7,8,9,10,11]. Host tissue collapse and necrotic symptoms occur only during the necrotrophic phase of development [1, 4, 11,12,13,14]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.