Abstract

Adaptive grid refinement is a critical component of the improvements that have recently been made in algorithms for the numerical solution of partial differential equations (PDEs). The development of new algorithms and computer codes for the solution of PDEs usually involves the use of proof-of-concept test problems. 2D elliptic problems are often used as the first test bed for new algorithms and codes. This paper contains a set of twelve parametrized 2D elliptic test problems for adaptive grid refinement algorithms and codes. The problems exhibit a variety of types of singularities, near singularities, and other difficulties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.