Abstract

An acetyl-coenzyme-A hydrolase from the supernatant fraction of rat liver is known to be rapidly inactivated at low temperature. Loss of catalytic activity is accompanied by apparent dissociation of tetrameric and dimeric forms of the enzyme into monomers. It was found that rewarming under appropriate conditions almost completely reversed the cold-induced inactivation and dissociation of the enzyme: At a protein concentration of 14 micrograms/ml, simple rewarming only partially restored the enzyme activity (less than 3% of the original activity), but at a higher concentration of the enzyme or in the presence of 1 mg/ml bovine serum albumin, the reactivation by warming was greater. Warming at 37 degrees C appeared to be optimal for reactivation; warming at 25 degrees C or at 43 degrees C was less effective. Longer exposure to cold did not affect reactivation on rewarming, but on repeated inactivation and reactivation the reactivation decreased to some extent, especially at lower concentrations of enzyme protein. Among various nucleotides tested, ATP greatly enhanced the restoration of the activity, while ITP, UTP and ADP were less effective and AMP, GTP, TTP and CTP had little effect. At an enzyme-protein concentration of 14 micrograms/ml, 2 mM ATP restored the enzyme activity to about 70% of that before cold treatment, while acetyl-CoA (0.5 mM) restored the activity about 50%. High concentrations of phosphate (0.92 M) and pyrophosphate (0.45 M) restored about 80% and 95%, respectively, of the original activity. Sucrose density gradient centrifugation of the active dimer at high enzyme concentration at 4 degrees C for 20 h produced a monomeric form without catalytic activity. Gel filtration showed that simple rewarming mostly converted the monomeric enzyme obtained in this way to the dimeric form, whereas on rewarming with ATP the monomer was mostly converted to a tetrameric form. The dimeric and tetrameric forms both had catalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.