Abstract

In many optimization problems in practice, multiple objectives have to be optimized at the same time. Some multi-objective problems are characterized by multiple connected Pareto-sets at different parts in decision space — also called equivalent Pareto-subsets. We assume that the practitioner wants to approximate all Pareto-subsets to be able to choose among various solutions with different characteristics. In this work, we propose a clustering-based niching framework for multi-objective population-based approaches that allows to approximate equivalent Pareto-subsets. Iteratively, the clustering process assigns the population to niches, and the multi-objective optimization process concentrates on each niche independently. Two exemplary hybridizations, rake selection and DBSCAN, as well as SMS-EMOA and kernel density clustering demonstrate that the niching framework allows enough diversity to detect and approximate equivalent Pareto-subsets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.