Abstract

In many real-world situations, the available data consist of a set of several asymmetric pairwise proximity matrices that collect directed exchanges between pairs of objects measured or observed in a number of occasions (three-way data). To unveil patterns of exchange, a clustering model is proposed that accounts for the systematic differences across occasions. Specifically, the goal is to identify the groups of objects that are primarily origins or destinations of the directed exchanges, and, together, to measure the extent to which these clusters differ across occasions. The model is based on two clustering structures for the objects, which are linked one-to-one and common to all occasions. The first structure assumes a standard partition of the objects to fit the average amounts of the exchanges, while the second one fits the imbalances using an “incomplete” partition of the objects, allowing some to remain unassigned. In addition, to account for the heterogeneity of the occasions, the amounts and directions of exchange between clusters are modeled by occasion-specific weights. An Alternating Least-Squares algorithm is provided. Results from artificial data and a real application on international student mobility show the capability of the model to identify origin and/or destination clusters with common behavior across occasions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.