Abstract

Efficient scheduling of processes on processors of a Network of Workstations (NOW) is essential for good system performance. However, the design of such schedulers is challenging because of the complex interaction between several system and workload parameters. Coscheduling, though desirable, is impractical for such a loosely coupled environment. Two operations, waiting for a message and arrival of a message, can be used to take remedial actions that can guide the behavior of the system towards coscheduling using local information. We present a taxonomy of three possibilities for each of these two operations, leading to a design space of scheduling mechanisms. This paper presents an extensive implementation and evaluation exercise in studying these mechanisms. Adhering to the philosophy that scheduling and communication are intertwined and should be studied in conjunction, a complete communication substrate for UltraSPARC workstations, connected by Myrinet and running Solaris 2.5.1, has been developed. This platform provides the entire Message Passing Interface (MPI) to readily run off-the-shelf MPI applications by employing protected low-latency user-level messaging. Several applications can concurrently use this interface. This platform has been used to design, implement, and uniformly evaluate nine scheduling strategies with a mixture of concurrent real applications with varying communication intensities. This includes four new schemes (Periodic Boost, Periodic Boost with Spin Block, Spin Yield, Periodic Boost with Spin Yield) that are presented in this paper. In addition to evaluatThis research is supported in part by an NSF Career Award MIPS-9701475, NSF grant MIP-9634197 and an NSF equipment grant CDA-9617315. ing the pros and cons of each mechanism in terms of throughput, response time, CPU utilization and fairness, it is shown that Periodic Boost is a promising approach for scheduling processes on a NOW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.