Abstract

The present paper is devoted to a micro–macro model of plastic deformation in Callovo Oxfordian argillite. This material is composed of a porous clay matrix which is reinforced by linear elastic mineral grains. The clay matrix is itself constituted of a solid phase containing a distribution of pores. The solid phase of clay matrix is described by a pressure sensitive plastic model. By means of a two step homogenization procedure, a macroscopic plastic criterion is formulated to estimate the nonlinear behavior of the clayey rock taking into account influences of pores and of mineral inclusions. Both associated and non-associated macroscopic plastic flow rules depending if the solid phase is associated or not. The mechanical behavior of the clayey rock in conventional triaxial compression tests is studied with the proposed micro–macro model. It is shown that the non-associated plastic flow rule of the solid phase is an essential mechanism for the description of the macroscopic plastic deformation of the clayey rock. Comparisons between the predicted results and experimental data show that the proposed model is able to capture the main features of the mechanical behavior of the studied material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.