Abstract

The seven-degree-of-freedom space manipulator, characterized by its redundant and aspheric wrist structure, is extensively used in space missions due to its exceptional dexterity and multi-joint capabilities. However, the non-spherical wrist structure presents challenges in solving inverse kinematics, as it cannot decouple joints using the Pieper criterion, unlike spherical wrist structures. To address this issue, this paper presents a closed-form analytical method for solving the inverse kinematics of seven-degree-of-freedom aspheric wrist space manipulators. The method begins by identifying the redundant joint through comparing the volumes of the workspace with different joints fixed. The redundant joint angle is then treated as a parametric joint angle, enabling the derivation of closed-form expressions for the non-parametric joint angles using screw theory. The optimal solution branch is identified through a comparative analysis of various self-motion manifold branches. Additionally, a hybrid approach, combining analytical and numerical methods, is proposed to optimize the parametric joint angle for a trajectory tracking task. Simulation results confirm the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.