Abstract

In this paper we discuss a closed-form approximation of the likelihood functions of an arbitrary diffusion process. The approximation is based on an exponential ansatz of the transition probability for a finite time step $\Delta t$, and a series expansion of the deviation of its logarithm from that of a Gaussian distribution. Through this procedure, dubbed {\em exponent expansion}, the transition probability is obtained as a power series in $\Delta t$. This becomes asymptotically exact if an increasing number of terms is included, and provides remarkably accurate results even when truncated to the first few (say 3) terms. The coefficients of such expansion can be determined straightforwardly through a recursion, and involve simple one-dimensional integrals. We present several examples of financial interest, and we compare our results with the state-of-the-art approximation of discretely sampled diffusions [Sahalia, Journal of Finance, Vol. 54, p. 1361 (1999)]. We find that the exponent expansion provides a similar accuracy in most of the cases, but a better behavior in the low-volatility regime. Furthermore the implementation of the present approach turns out to be simpler. Within the functional integration framework the exponent expansion allows one to obtain remarkably good approximations of the pricing kernels of financial derivatives. This is illustrated with the application to simple path-dependent interest rate derivatives. Finally we discuss how these results can also be used to increase the efficiency of numerical (both deterministic and stochastic) approaches to derivative pricing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.