Abstract

This paper addresses the problem of automatic recognition of out-of-topic documents from a small set of similar documents that are expected to be on some common topic. The objective is to remove documents of noise from a set. A topic model based classification framework is proposed for the task of discovering out-of-topic documents. This paper introduces a new concept of annotated {\it search engine suggests}, where this paper takes whichever search queries were used to search for a page as representations of content in that page. This paper adopted word embedding to create distributed representation of words and documents, and perform similarity comparison on search engine suggests. It is shown that search engine suggests can be highly accurate semantic representations of textual content and demonstrate that our document analysis algorithm using such representation for relevance measure gives satisfactory performance in terms of in-topic content filtering compared to the baseline technique of topic probability ranking.

Highlights

Read more

Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.