Abstract

An upper-bound analysis is proposed for the extrusion of square sections from square billets through curved dies having prescribed profiles. Kinematically-admissible velocity fields for the purpose are derived using the dual-stream-function technique. Analytical results are presented for both frictionless and sticking friction conditions; for the latter situation the die geometry has been optimised with respect to appropriate parameters. It is shown that a cosine-shaped die with zero entry and exit angles yields the lowest extrusion pressure in the absence of friction, whilst the best upper-bound is provided by a straight tapered die under sticking-friction conditions. The internal work of deformation, however, is still found to be minimum for a straight die for frictionless extrusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.