Abstract

Humans have the ability to constantly learn new knowledge. However, for artificial intelligence, trying to continuously learn new knowledge usually results in catastrophic forgetting, the existing regularization-based and dynamic structure-based approaches have shown great potential for alleviating. Nevertheless, these approaches have certain limitations. They usually do not fully consider the problem of incompatible feature embeddings. Instead, they tend to focus only on the features of new or previous classes and fail to comprehensively consider the entire model. Therefore, we propose a two-stage learning paradigm to solve feature embedding incompatibility problems. Specifically, we retain the previous model and freeze all its parameters in the first stage while dynamically expanding a new module to alleviate feature embedding incompatibility questions. In the second stage, a fusion knowledge distillation approach is used to compress the redundant feature dimensions. Moreover, we propose weight pruning and consolidation approaches to improve the efficiency of the model. Our experimental results obtained on the CIFAR-100, ImageNet-100 and ImageNet-1000 benchmark datasets show that the proposed approaches achieve the best performance among all the compared approaches. For example, on the ImageNet-100 dataset, the maximal accuracy improvement is 5.08%. Code is available at https://github.com/ybyangjing/CIL-FCE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.