Abstract

Despite being a non-hematophagous leech, Whitmania pigra is widely used in traditional Chinese medicine for the treatment of antithrombotic diseases. In this study, we provide a high quality genome of W. pigra and based on which, we performed a systematic identification of the potential antithrombotic genes and their corresponding proteins. We identified twenty antithrombotic gene families including thirteen coagulation inhibitors, three platelet aggregation inhibitors, three fibrinolysis enhancers, and one tissue penetration enhancer. Unexpectedly, a total of 79 antithrombotic genes were identified, more than a typical blood-feeding Hirudinaria manillensis, which had only 72 antithrombotic genes. In addition, combining with the RNA-seq data of W. pigra and H. manillensis, we calculated the expression levels of antithrombotic genes of the two species. Five and four gene families had significantly higher and lower expression levels in W. pigra than in H. manillensis, respectively. These results showed that the number and expression level of antithrombotic genes of a non-hematophagous leech are not always less than those of a hematophagous leech. Our study provides the most comprehensive collection of antithrombotic biomacromolecules from a non-hematophagous leech to date and will significantly enhance the investigation and utilization of leech derivatives in thrombosis therapy research and pharmaceutical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.