Abstract
Chronic sinusitis is the most prevalent chronic disease in the United States in adults aged 18 to 44 years, with approximately 250,000 operations performed annually. Although often successful, sinus surgery fails in greater than 15% of patients. Adhesion formation is a common complication and cause for subsequent revision surgery. Here, the authors evaluate a sprayable chitosan/starch-based sinus sealant and demonstrate its ability to reduce adhesion formation both in vitro and in 2 animal models. Randomized, controlled, animal trials. Academic medical center (fibroblast experiments) and animal laboratories (sheep and rabbit studies). This sinus sealant was applied to human cultured fibroblasts obtained from surgically removed polyps to examine its ability to inhibit fibroblast migration and proliferation. The sinus sealant was applied to New Zealand White rabbits (n = 20) in an established cecal-sidewall abrasion model and to sheep (n = 10) in a sinus surgical adhesion model to examine its ability to reduce adhesion formation. This sinus sealant inhibited migration and proliferation of human cultured fibroblasts and reduced the total adhesion score from 4.9 to 0.3 for a total reduction of 94% (95th percentile confidence interval [CI], 78%, 100%; P < .001) in a well-established rabbit cecal-sidewall model commonly used for adhesion testing. Moreover, this sealant reduced adhesion formation from 80% to 10% for a total reduction of 70% (95th percentile CI, 57%, 93%; P = .003) in a sheep sinus adhesion surgical model. This chitosan-based sealant demonstrates promise for reducing adhesion formation in sinus surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.