Abstract

Soft errors are transient errors caused by single-event effects (SEEs) resulting from a strike by high-energy particles acting on sensitive areas of integrated circuits. Soft errors frequently occur in the space environment, adversely affecting the reliability of aerospace-based computing. A recovery process is launched to recover the program when soft errors are detected. A periodic checkpointing recovery approach is widely utilized to prevent soft errors. However, this approach does not consider the detector locations, resulting in a large time overhead. This paper proposes a checkpointing recovery approach for soft errors based on detector locations called DLCKPT. DLCKPT reduces the time overhead by considering detector locations. The experimental results show that the percentage decrease in the time overhead between the DLCKPT and the periodic checkpointing recovery approach is 13.4%. The average recovery rate and average space overhead are 99.3% and 44.4% for the periodic checkpointing recovery approach and 99.4% and 34.6% for the DLCKPT. These results show that the DLCKPT and the periodic checkpointing recovery approach produce comparable results for the recovery rate. The DLCKPT has a lower time overhead and a slightly lower space overhead than the periodic checkpointing recovery approach, demonstrating its effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.