Abstract

In this paper, we solve a system of fractional differential equations within a fractional derivative involving the Mittag-Leffler kernel by using the spectral methods. We apply the Chebyshev polynomials as a base and obtain the necessary operational matrix of fractional integral using the Clenshaw–Curtis formula. By applying the operational matrix, we obtain a system of linear algebraic equations. The approximate solution is computed by solving this system. The regularity of the solution investigated and a convergence analysis is provided. Numerical examples are provided to show the effectiveness and efficiency of the method.

Highlights

  • 1 Introduction Despite the long history of fractional calculus in the field of mathematics, a large amount of real world applications of this field has appeared mainly during the last decades. This type of calculus has become so wide that almost no branch of science and engineering cannot be found without fractional calculus and a lot of books have been written in these regards

  • We recall that the Riemann–Liouville definition entails physically unacceptable initial conditions [1]; for the Liouville–Caputo fractional derivative, the initial conditions are expressed in terms of integer-order derivatives having direct physical significance [1, 5]

  • A few years ago Caputo and Fabrizio [6] have opened the following subject of debate within the mathematical community: is it possible to describe all nonlocal phenomena within the same basic kernels, namely the power kernel involved within the definition of Riemann–Liouville derivative and some other few basic fractional derivatives

Read more

Summary

Introduction

Despite the long history of fractional calculus in the field of mathematics, a large amount of real world applications of this field has appeared mainly during the last decades. Numerical solution of the system (1) using operational matrix spectral methods based on Chebyshev polynomials is very important. We use this formula to obtain the operational matrix of the fractional integration.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.