Abstract
A fundamental limitation to the use of single-point absorbance detection for capillary electrophoresis is irradiance, since it is not possible to create an image at the detection point on capillary that is brighter than the light source. This limitation may be overcome by illuminating a length of the capillary using a fiber-optic bundle and using a charge coupled device (CCD) camera that can image the full length of the illuminated zone. The present paper describes design and development of a CCD detector for UV absorbance that can be used in both multiwavelength and single-wavelength modes. The CCD camera images analyte peaks in the capillary dimension, together with wavelength-resolved absorbance in the dimension perpendicular to the capillary. Successive snapshots of the peaks are added together, after appropriate correction for time-dependent peak displacement, without sacrificing spatial resolution. Measured baseline rms noise values at 200 nm are 34 μAU using a holographic grating in multiwavelength mode and 8 μAU with the addition of a band-pass filter. Both values are in excellent agreement with calculations of limiting shot noise. Performance in multiwavelength mode is constrained by the 470-ms readout time of the CCD used, which sets a maximum duty cycle of 2.3%. Noise contributions from source intensity fluctuations are reduced by using a portion of the CCD image to provide a baseline reference signal. With 4-hydroxybenzoate as test analyte, the linear dynamic range in multiwavelength mode is shown to be between 3 and 4 orders of magnitude. High-quality spectra of 2-, 3-, and 4-methylbenzoates are obtained on capillary and used in deconvolution of closely migrating peaks of the 2- and 3-isomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.