Abstract

Given two t-norms T 1 and T 2, it is quite often difficult or even impossible to check directly whether T 1 ⪕ T 2 . In Schweizer and Sklar (1983), a necessary and sufficient condition is given for continuous Archimedean t-norms to be comparable. We simplify this result, proving a sufficient condition which involves only one argument of a one-place function rather than two arguments. This result is applied to show the monotonicity of some well-known classes of t-norms. Next, we generalize the result of Schweizer and Sklar to the case of all continuous t-norms and present also a sufficient condition, which is again easier to check.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.