Abstract

Let $p(x,y)$ be the transition function for a symmetric, irreducible Markov chain on the countable set $S$. Let $\eta (t)$ be the infinite particle system on $S$ with the simple exclusion interaction and one-particle motion determined by $p$. The present author and Spitzer have determined all of the invariant measures of $\eta (t)$, and have obtained ergodic theorems for $\eta (t)$, under two different sets of assumptions. In this paper, these problems are solved in the remaining case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.