Abstract
We examine the confined elastic buckling of a single N-particle force chain. For a given set of material parameters, a characteristic load-carrying capacity is attained for a clearly defined range of force chain lengths N ≥ L*. The rotation and translation of particles along periodically located segments of the critical buckling mode, each of length L*, are on average consistent with those for particles inside the shear band. Preliminary results from postbuckling analysis show that the critical buckling mode is unstable and that buckling culminates in a localized response over one of these segments where observed shear band kinematics prevail. Thus, the localized buckling response is characterized by the rotation of a finite number of particles with a clearly defined length L*. For a wide range of material properties, L* is around eight particle diameters—the observed shear band thickness for many granular materials, most notably sand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.