Abstract

Mixing in extrusion is a vital part of achieving consistent and high-quality extrudates, with residence time being an elucidative measure of the mixing performance. Recent studies around numerical modeling of residence time distributions in single-screw extruders appear to consider flooded extruders mainly. This paper introduces a new and general CFD model to characterize the extruder fill length and residence time distribution for a viscoplastic ceramic material in a starve-fed extruder, including free surface tracking. The CFD model simulates a pulse-injection test, where a fluid parcel is injected at the inlet, with subsequent outlet concentration measured over time. The study includes material characterization and model validation based on laboratory tests. Results quantify the impact of accounting for the partially filled extruder instead of assuming it to be flooded, addressing the potential error when only considering simple analytical approximations to calculate system average residence times. Results further show the ability to fit simulation results to more simple analytical models. This underlines the importance of including the entire extrusion system and forming the basis for further work toward enabling real-time model predictions in starve-fed extrusion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.