Abstract

This paper presents the development of a numerical algorithm for the computation of axial thrust load on a centrifugal compressor. An unstructured flow solver has been developed for the computation of a hybrid, structured and unstructured grid. The computational domain of the impeller has been discretized using a structured mesh, while the computational domain on the back side of the wheel has been discretized using an unstructured mesh. The two grids are merged and a median dual-mesh is generated. The Navier-Stokes equations are discretized using a finite volume method. Roe’s flux-difference scheme is used for inviscid fluxes and directional derivatives along edges are used for viscous fluxes. The gradients at the mesh vertices are calculated using the Least-squares method. An explicit scheme is used for time integration. Convergence is accelerated using a local time-step and implicit residual smoothing. The results of the numerical simulation include the axial thrust load of the centrifugal compressor. In addition, details of the leakage flow are presented.Copyright © 2001 by ASME

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.