Abstract
Spatially structured discrete data arise in diverse areas of application, such as forestry, epidemiology, or soil sciences. Data from several binary variables are often collected at each location. Variation in distributional properties across the spatial domain is of interest. The specific application that motivates our work involves characterizing historical distributions of two species of Oak in the Driftless Area in the Midwestern United States. Scientists are interested in understanding the patterns of interaction between species, as well as their relationships to spatial covariates. Accounting for spatial dependence is not only of inherent interest but also reduces prediction mean squared error, and is necessary for obtaining appropriate measures of uncertainty (i.e., standard errors and confidence intervals). To address the needs of the application, we introduce a centered bivariate autologistic model, which accounts for the statistical dependence in two response variables simultaneously, for the association between them and for the effect of spatial covariates. The model proposed here offers a relatively stable large-scale model structure, with model parameters which can be interpreted in the usual sense across levels of dependence. Since the model allows for separate dependence parameters for each variable, it offers, in essence, the equivalent of a model with a non-separable covariance function. The flexible model framework permits straightforward generalizations to structures with more than two variables, a temporal component, or an irregular lattice domain. Supplementary materials accompanying this paper appear on-line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Agricultural, Biological, and Environmental Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.