Abstract

Extracellular matrix (ECM)-ornamented biomaterials have attracted attention due to their high potential to improve the biofunctionality of original materials. It is thought that ECM with a bone mimetic microenvironment generated by the specific induction of osteoblasts would be more beneficial for bone regeneration than a regular ECM. In this study, we developed an osteogenic and mineralized ECM construct (Os/M-ECM-SIS) under the guidance of osteoblasts on a small intestinal submucosa (SIS) scaffold cotreated with icariin and calcium. The generated Os/M-ECM-SIS scaffolds exhibited similar morphology and inorganic components as natural bone and higher mechanical strength than ECM-SIS. Cell adhesion, proliferation, and differentiation of osteoblasts and fibroblasts were also enhanced in the cells cultured on the Os/M-ECM-SIS scaffolds. The Os/M-ECM-SIS scaffolds even promoted transdifferentiation of fibroblasts with an upregulation of osteogenic differentiation markers. In a calvarial defect model, new bone formation was greatly enhanced in defects implanted with the Os/M-ECM-SIS scaffolds compared with ECM-SIS scaffolds. Further study showed that the Os/M-ECM-SIS scaffolds promoted bone regeneration in vitro and in vivo via the Bmp/Smad-signaling pathway. Thus, this work proposes a valuable method for generating a mineralized bone mimetic scaffold with SIS as off-the-shelf bone graft substitute that provides an excellent osteogenic microenvironment, making it suitable for application in bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.