Abstract

Abstract A cell-based smoothed radial point interpolation method (CS-RPIM) is further extended to solve 2D and 3D heat transfer problems. For this method, the problem domain is first discretized using triangular elements or tetrahedral elements, and each element is further divided into several smoothing cells. Then, the field functions are approximated using RPIM shape functions. Finally, the CS-RPIM utilizes the smoothed Galerkin weak form to obtain the discretized system equations in these smoothing cells. Several numerical examples with different kinds of boundary conditions are investigated to verify the validity of the present method. It has been found that the CS-RPIM can achieve better accuracy and higher convergence rate, when dealing with the 2D and 3D heat transfer analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.