Abstract
New evidences provided that the tropical cyclone (TC) Linfa in 2015 induced looping path of Kuroshio invasion into the northeastern South China Sea (NESCS) through the northwestern Luzon Strait (LS), based on the in-situ measurements, satellite data and model output data. This TC-enhanced Kuroshio invasion with low nutrients and denser waters suppressed the TC âWind Pumpâ induced upwelling and nutrients uptake, and therefore inhibited the Chlorophyll a concentration (Chl-a) increase from surface to ~50 m in the open ocean of the NESCS. The TC-induced Kuroshio invasion promoted the generation of the strong cyclonic eddy to its left side where weak Ekman Pumping Velocity was observed. This enhancing cyclonic eddy then dominated the nutrients uplift and increased the surface and subsurface (0â50 m) Chl-a through eddy pumping rather than Ekman Pumping. The TC-declined anti-cyclonic eddy, which shoaled the Mixed Layer Depth (MLD), benefited to the nutrient uptake through TC-induced upwelling and thereby increased the surface Chl-a and raised the Chl-a Maximum Layer (CML) to ~20 m over the southwestern LS. The temporal Chl-a variations were also influenced by TC intensities and biochemical processes. The air-sea heat budget analysis indicated that, the air-sea heat exchange contributed to nearly 80% of the sea surface cooling (SST cooling) over the northwestern LS with Kuroshio invasion, while eddy-induced upwelling dominated the SST cooling over the western LS, and the wind-driven upwelling (and mixing) controlled the SST cooling over the southwestern LS. These different formations of SST cooling then played important role in Chl-a variations. This study is the first case of TC âWind Pumpâ induced Chl-a variations considering air-sea heat exchange, Kuroshio invasion and mesoscale eddies over LS, which would help to evaluate the influence of TCs over the other major heat transport arteries of the world ocean: The Gulf Stream area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.