Abstract

A biosensor based on an array of vertically aligned carbon nanofibers (CNFs) grown by plasma enhanced chemical vapor deposition is found to be effective for the simultaneous detection of dopamine (DA) and serotonin (5-HT) in the presence of excess ascorbic acid (AA). The CNF electrode outperforms the conventional glassy carbon electrode (GCE) for both selectivity and sensitivity. Using differential pulse voltammetry (DPV), three distinct peaks are seen for the CNF electrode at 0.13V, 0.45V, and 0.70V for the ternary mixture of AA, DA, and 5-HT. In contrast, the analytes are indistinguishable in a mixture using a GCE. For the CNF electrode, the detection limits are 50nM for DA and 250nM for 5-HT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.