Electroanalysis | VOL. 9
Read

A carbon dioxide biosensor based on hemoglobin incorporated in metal supported bilayer lipid membranes (BLMs): Investigations for enhancement of response characteristics by using platelet-activating factor

Publication Date Oct 1, 1997

Abstract

The present article reports the development of a novel electrochemical carbon dioxide minisenso based on hemoglobin which is incorporated into self-assembled bilayer lipid membranes (s-BLMs) on a metal support. The presence of carbon dioxide in solution was found to modulate the ion conductivity of BLMs containing hemoglobin, when using a lipid composition containing egg phosphatidylcholine (egg PC) and dipalmitoylphosphatidic acid (DPPA). The use of stabilized metal-supported BLMs has allowed the electrochemical investigation of the reversibility of the response to carbon dioxide and of hemoglobin binding to lipid membranes. The effects of hemoglobin concentration, composition of BLMs in DPPA and pH on the sensitivity of the response were examined. The sensor provides the advantages of fast response times (on the order of ca. 10 s) to alterations of carbon dioxide concentration, low detection limits (ca. 0.4 × 10−6 M) and capability of analysing small sample volumes. Semisynthetic platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine, AGEPC) was found to improve the response characteristics of the carbon dioxide sensor (i.e., decrease of the detection limit to nM range and increase of the dynamic range of carbon dioxide determination). The biosensor was routinely mechanically stable and functional for over 48 h. During this time it showed reproducible sensitivity and response to a given concentration of carbon dioxide in solution.

Concepts

Carbon Dioxide In Solution Dioxide In Solution Dipalmitoylphosphatidic Acid Self-assembled Bilayer Lipid Membranes Effects Of Hemoglobin Concentration Bilayer Lipid Membranes Metal Support Presence Of Carbon Dioxide Carbon Dioxide Carbon Dioxide Concentration

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Coronavirus Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  5

The coronavirus disease 2019 (COVID-19) is a contagious disease that is caused by a novel coronavirus. Bentham is offering subject-based scholarly con...

Read More

Climate change Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  5

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cooki...

Read More

Quality Of Education Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  4

Introduction: The Internet is an extensively used source of medical education by the public. YouTube is a valuable source of information which can be ...

Read More

Gender Equality Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  3

Gender equity in the classroom is important for teachers to think about in order to ensure they are creating safe environments that allow their studen...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.