Abstract
A hybrid phase/current-mode phase interpolator (HPC-PI) is presented to improve phase noise performance of ring oscillator based fractional-N PLLs. The proposed HPC-PI alleviates the bandwidth trade-off between VCO phase noise suppression and $\Delta \Sigma $ quantization noise suppression. By combining the phase detection and interpolation functions into XOR phase detector/interpolator (XOR PD-PI) block, accurate quantization error cancellation is achieved without using calibration. Use of a digital MDLL in front of the fractional-N PLL helps in alleviating the bandwidth limitation due to reference frequency and enables bandwidth extension even further. The extended bandwidth helps in suppressing the ring-VCO phase noise and lowering the in-band noise floor. Fabricated in 65 nm CMOS process, the prototype generates fractional frequencies from 4.25 to 4.75 GHz, with in-band phase noise floor of $-$ 104 dBc/Hz and 1.5 ps $_{\rm rms}$ integrated jitter. The clock multiplier achieves power efficiency of 2.4 mW/GHz and FoM of $-$ 225.8 dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.