Abstract

A calculation model was developed to predict the shutdown dose rate around the recirculation pipes and their components in boiling water reactors (BWRs) by simulating the corrosion product transport in primary cooling water. The model is characterized by separating cobalt species in the water into soluble and insoluble materials and then calculating each concentration using the following considerations: (1) Insoluble cobalt (designated as crud cobalt is deposited directly on the fuel surface, while soluble cobalt (designated as ionic cobalt) is adsorbed on iron oxide deposits on the fuel surface. (2) Cobalt-60 activated on the fuel surface is dissolved in the water in an ionic form, and some is released with iron oxide as crud. The model can follow the reduction of /sup 60/Co in the primary cooling water caused by the control of the iron feed rate into the reactor, which decreases the iron oxide deposits on the fuel surface and then reduces the cobalt adsorption rate. The calculated results agree satisfactorily with the measurements in several BWR plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.