Abstract

During the design stage, the ideal simulation and visualization of the mechanical assemblies behavior require the modeling of parts with dimensional and geometrical defects. However, the deviations caused by parts deformations can generate an important difference between the ideal assembly and the real product. In this regard, this paper proposes a tolerance analysis method of CAD assemblies considering non-rigid joints between parts with defects. The determination of realistic rigid components with dimensional and geometrical defects is based on the worst case tolerancing approach and the Small Displacement Torsor (SDT) parameters. The Finite Element (FE) computation is executed to determine deformations of realistic non-rigid part models under external loads. Sub-algorithms to define non-rigid joints between realistic parts are developed. The tolerance analysis is established using the realistic CAD assembly. A case study is presented to evaluate the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.