Abstract

As social network and RDF data grow dramatically in size to billions of edges, the ability to scalably answer queries posed over graph datasets becomes increasingly important. In this paper, we consider subgraph matching queries which are often posed to social networks and RDF databases - for such queries, we want to find all matching instances in a graph database. Past work on subgraph matching queries uses static cost models which can be very inaccurate due to long-tailed degree distributions commonly found in real world networks. We propose the BudgetMatch query answering algorithm. BudgetMatch costs and recosts query parts adaptively as it executes and learns more about the search space. We show that using this strategy, BudgetMatch can quickly answer complex subgraph queries on very large graph data. Specifically, on a real world social media data set consisting of 1.12 billion edges, we can answer complex subgraph queries in under one second and significantly outperform existing subgraph matching algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.