Abstract
A novel broadband refractive index nanosensor based on multi-interference of surface plasmon polaritons is reported. It is composed of a metallic nanoslit flanked by periodical grooves on its two sides. Extraordinary high-throughput, high-resolution, and high-sensitivity detections can be realized by observing the shift of the resonant wavelength. The sensor covers a large range of the refractive index change due to both the narrow linewidth of the single resonant peak in the broadband spectrum and the sensitive shift of the peak position withthe refractive index change. A theoretical model is developed to well predict the optical response of the sensor. An excellent linearity between the resonant wavelength and the refractive index can be achieved. The sensitivity, which is 620 nm/refractive index unit, can be further increased by tuning the period of the grooves and the high throughput; high resolution can be simultaneously achieved by adding the number of grooves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.