Abstract

A compact broadband cross-polarization conversion metasurface functioning in the microwave regime is realized and experimentally demonstrated. The metasurface consists of a two-dimensional periodic arrangement of anisotropic doubleslit split-ring-resonator-based unit cells printed on top of a dielectric substrate, backed by metallic cladding. The proposed metasurface converts an x- or y-polarized wave into its orthogonal polarization over a fractional bandwidth of 100% from 5– 15 GHz, both for normal as well as oblique incidence. Moreover, the sub-wavelength unit-cell size, thin dielectric substrate, and unique unit-cell design collectively make the response of the metasurface same for both polarizations and insensitive to the incidence angle. The designed structure is fabricated and tested. The measurement and simulation results are found to be consistent with each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.