Abstract

Increasing environmental pollution and energy consumption have increased the demand for renewable and clean energy. Hydrogen storage materials have attracted increasing attention owing to the large volumetric density of hydrogen storage and high safety, which are beneficial for large-capacity and long-term energy storage capability. Various characterization approaches with different length scales have been conducted to understand the mechanisms of hydrogen absorption and desorption in these materials. In particular, local characterization techniques have been recently applied to study the surface and nanostructural interface effects of these materials because these features can affect hydrogen storage properties. In this article, we review the application of these characterization techniques in exploring hydrogen storage materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.