Abstract

Rising antibiotic resistance and an alarmingly lean antibiotic pipeline require the adoption of novel approaches to rapidly discover new structural and functional classes of antibiotics. Excitingly, algorithmic approaches to antibiotic discovery are sufficiently advanced to meaningfully influence the antibiotic discovery process. Indeed, once trained on high-quality datasets, contemporary machine-learning and deep-learning models can be used to perform predictions for new antibiotics across vast chemical spaces, orders of magnitude more rapidly than compounds can be screened in the laboratory. This increases the probability of discovering new antibiotics with desirable properties. In this short review, we briefly describe the utility of contemporary machine-learning and deep-learning approaches to guide the discovery of new small-molecule antibiotics and unidentified natural products. We then propose a call to action for more open sharing of high-quality screening datasets to accelerate the rate at which forthcoming antibiotic-prediction models can be trained. Together, we aim to introduce antibiotic discoverers to a sample of recent applications of contemporary algorithmic methods to facilitate the wider adoption of these powerful computational approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.