Abstract

Bridging laws are essential in predicting the mechanical behaviour of conventional short-fibre-reinforced composites and the emerging nanofibre-reinforced composites. In this paper, we first review some studies on the toughness of carbon nanotube-reinforced composites that is induced by the pull-out of the nanotubes from the matrix, and on the development of the corresponding bridging laws. A close examination of the available bridging laws for carbon nanotubes reveals that some fundamental issues need to be further addressed. We propose a simple nonlinear and smooth bridging law to describe the pull-out force–displacement behaviour of carbon nanotubes from a matrix. This law contains only two material parameters, reflects the basic features of the pull-out experiments, and is easy to use. We then use this bridging law to calculate the fracture toughness of carbon nanotube-reinforced nanocomposites and predict the pull-out force–displacement response of conventional short fibres that are grafted with carbon nanotubes. Some parametric studies are conducted to reveal the influence of various parameters at the nano- and micro-scale on these properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.