Abstract
We define a robust fault model as a model where the existence of an undetectable fault implies the existence of logic redundancy, or more generally, a suboptimality in the synthesis of the circuit. The stuck-at fault model is robust, but other fault models such as certain bridging fault models are not. A robust fault model provides a mechanism to synthesize circuits in which all the target faults are detectable and 100% fault coverage is achievable. The ability to achieve 100% fault coverage, or understand why it is not achievable, is important since the requirement to achieve high test quality translates into a requirement to achieve complete fault coverage for target faults, regardless of the metrics used to measure test quality. We discuss a robust bridging fault model and its use as part of a test generation process for a non-robust bridging fault model (a non-robust bridging fault model may have to be used in order to capture the behavior of bridging defects). We also present experimental results related to the robust bridging fault model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.