Abstract

We give a branch-and-cut algorithm for solving linear programs (LPs) with continuous separable piecewise-linear cost functions (PLFs). Models for PLFs use continuous variables in special-ordered sets of type 2 (SOS2). Traditionally, SOS2 constraints are enforced by introducing auxiliary binary variables and other linear constraints on them. Alternatively, we can enforce SOS2 constraints by branching on them, thus dispensing with auxiliary binary variables. We explore this approach further by studying the inequality description of the convex hull of the feasible set of LPs with PLFs in the space of the continuous variables, and using the new cuts in a branch-and-cut scheme without auxiliary binary variables. We give two families of valid inequalities. The first family is obtained by lifting the convexity constraints. The second family consists of lifted cover inequalities. Finally, we report computational results that demonstrate the effectiveness of our cuts, and that branch-and-cut without auxiliary binary variables is significantly more practical than the traditional mixed-integer programming approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.