Abstract

This paper presents a branch and bound algorithm for the single machine scheduling problem 1| r i |∑ U i where the objective function is to minimize the number of late jobs. Lower bounds based on a Lagrangian relaxation and no reductions to polynomially solvable cases are proposed. Efficient elimination rules together with strong dominance relations are also used to reduce the search space. A branch and bound exploiting these techniques solves to optimality instances with up to 200 jobs, improving drastically the size of problems that could be solved by exact methods up to now.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.