Abstract
The boundary-condition-transfer method for a shell-to-solid submodeling is fundamental for analyzing local or weak regions of a complex structure accurately. In this paper, a novel method is presented for transferring displacement boundaries based on hypothetical nodes. By considering the invariable volume of an element as a constraint, the interpolation through conventional methods using 6-degrees-of-freedom (DOFs) nodal translations and rotations is converted into a 3-DOF translational interpolation at the cut boundary of a submodel. To demonstrate this method, a radial basis function (RBF) was employed for interpolation. For validating the accuracy of the proposed method, a square plate with a hole under tensile and bending load were designed as examples. By considering global and local errors, three typical kernel functions with respect to mesh density ratios were analyzed to fix the optimal parameter in RBF. The examples showed that the proposed method significantly improves the accuracy in shell-to-solid submodeling problems compared to conventional solutions such as ANSYS. For structural analysis of a high-speed train car body under combined mechanical and aerodynamic loads, the submodeling method was implemented on the solid-element-based local model with a welding seam, with which a more detailed stress state was obtained compared with that computed by shell elements. The accurate and reliable results illustrate that the proposed method is the core for the global–local analysis of large complex structures, which also is used for the design and evaluation of the mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.