Abstract

It is shown that the parameters of a linear code over ${\mathbb F}_q$ of length $n$, dimension $k$, minimum weight $d$, and maximum weight $m$ satisfy a certain congruence relation. In the case that $q=p$ is a prime, this leads to the bound $m \leq (n-d)p-e(p-1)$, where $e \in \{0,1,\ldots,k-2 \}$ is maximal with the property that ${n-d \choose e} \not\equiv 0 \pmod{p^{k-1-e}}.$ Thus, if $C$ contains a codeword of weight $n$, then $n \geq d/(p-1)+d+e$. The results obtained for linear codes are translated into corresponding results for $(n,t)$-arcs and $t$-fold blocking sets of AG$(k-1,q)$. The bounds obtained in these spaces are better than the known bounds for these geometrical objects for many parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.