Abstract
A recurrent fuzzy neural network with internal feedback is suggested in this paper. The network is entitled dynamic block-diagonal fuzzy neural network (DBD-FNN), and constitutes a generalized Takagi-Sugeno-Kang fuzzy system, where the consequent parts of the fuzzy rules are small Block-Diagonal Recurrent Neural Networks. The proposed model is applied to a benchmark identification problem, where a dynamic system is to be identified. Additionally, an application of the proposed model to the problem of the analysis of lung sounds is presented. Particularly, a filter based on the DBD-FNN is developed, trained with the RENNCOM method. Extensive experimental and simulation results are given and performance comparisons with a series of other models are conducted, highlighting the modeling characteristics of DBD-FNN as an identification tool and the effectiveness of the proposed separation filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.